Upcoming Sessions
-
May
19
ILT - Cloudera Training for Apache Kafka - 4407295
Starting:2025/05/19 @ 08:30 AM (GMT+02:00) BudapestEnding:2025/05/22 @ 04:30 PM (GMT+02:00) BudapestType:Multi-day Session -
May
26
ILT - ADMIN-230: Administering Cloudera on premises - 4352803
Starting:2025/05/26 @ 08:00 AM (GMT+02:00) BudapestEnding:2025/05/29 @ 04:00 PM (GMT+02:00) BudapestType:Multi-day Session
See All Upcoming Sessions

This four-day instructor-led course begins by introducing Apache Kafka, explaining its key concepts and architecture, and discussing several common use cases. Building on this foundation, you will learn how to plan a Kafka deployment, and then gain hands-on experience by installing and configuring your own cloud-based, multi-node cluster running Kafka on the Cloudera Data Platform (CDP). You will then use this cluster during more than 20 hands-on exercises that follow, covering a range of essential skills, starting with how to create Kafka topics, producers, and consumers, then continuing through progressively more challenging aspects of Kafka operations and development, such as those related to scalability, reliability, and performance problems. Throughout the course, you will learn and use Cloudera’s recommended tools for working with Kafka, including Cloudera Manager, Schema Registry, Streams Messaging Manager, and Cruise Control. November 10-13, 2025 Virtual Classroom, EMEA 9:00 - 17:00 (GMT+2 Timezone) Read more

This four-day instructor-led course begins by introducing Apache Kafka, explaining its key concepts and architecture, and discussing several common use cases. Building on this foundation, you will learn how to plan a Kafka deployment, and then gain hands-on experience by installing and configuring your own cloud-based, multi-node cluster running Kafka on the Cloudera Data Platform (CDP). You will then use this cluster during more than 20 hands-on exercises that follow, covering a range of essential skills, starting with how to create Kafka topics, producers, and consumers, then continuing through progressively more challenging aspects of Kafka operations and development, such as those related to scalability, reliability, and performance problems. Throughout the course, you will learn and use Cloudera’s recommended tools for working with Kafka, including Cloudera Manager, Schema Registry, Streams Messaging Manager, and Cruise Control. May 19-22, 2025 Virtual Classroom, EMEA 8:30 - 16:30 (GMT+2 Timezone) Read more
.png)
About This Course Explore the core features of Cloudera AI and how they power modern AI and ML workflows. This course introduces Cloudera’s end-to-end AI capabilities—from data engineering and warehousing to model deployment—all built on a unified platform designed for enterprise-grade AI. You’ll gain foundational knowledge of tools like the Cloudera AI Workbench, AI Inference Service, Model Hub, AI Registry, and Private AI architecture, and understand how they come together to support scalable, secure, and efficient AI solutions. Learn how the enterprise can Infuse, Build, and Run AI with Cloudera. Goal: By the end of this course, you’ll be able to identify the key components of Cloudera AI and explain how they support enterprise AI initiatives from data to deployment. TIME: 45 minutes Read more

Overview This three-day hands-on training course delivers the key concepts and expertise developers need to optimize the performance of their Apache Spark applications. During the course, participants will learn how to identify common sources of poor performance in Spark applications, techniques for avoiding or solving them, and best practices for Spark application monitoring. Optimizing Apache Spark Applications presents the architecture and concepts behind Apache Spark and underlying data platform, then builds on this foundational understanding by teaching students how to tune Spark application code. The course format emphasizes instructor-led demonstrations illustrate both performance issues and the techniques that address them, followed by hands-on exercises that give students an opportunity to practice what they've learned through an interactive notebook environment. Download full course description What You'll Learn Students who successfully complete this course will be able to: Understand Apache Spark's architecture, job execution, and how techniques such as lazy execution and pipelining can improve runtime performance Evaluate the performance characteristics of core data structures such as RDD and DataFrames Select the file formats that will provide the best performance for your application Identify and resolve performance problems caused by data skew Use partitioning, bucketing, and join optimizations to improve SparkSQL performance Understand the performance overhead of Python-based RDDs, DataFrames, and user-defined functions Take advantage of caching for better application performance Understand how the Catalyst and Tungsten optimizers work Understand how Observability can help troubleshoot and proactively monitor Spark applications performance Learn how the Adaptive Query Execution engine improves performance What to Expect This course is designed for software developers, engineers, and data scientists who have experience developing Spark applications and want to learn how to improve the performance of their code. This is not an introduction to Spark. Spark examples and hands-on exercises are presented in Python and the ability to program in this language is required. Basic familiarity with the Linux command line is assumed. Basic knowledge of SQL is helpful. DATE: November 17-19, 2025 Virtual Classroom, EMEA 9:00 - 17:00 (GMT+2 TIMEZONE) Read more

Overview This three-day hands-on training course delivers the key concepts and expertise developers need to optimize the performance of their Apache Spark applications. During the course, participants will learn how to identify common sources of poor performance in Spark applications, techniques for avoiding or solving them, and best practices for Spark application monitoring. Optimizing Apache Spark Applications presents the architecture and concepts behind Apache Spark and underlying data platform, then builds on this foundational understanding by teaching students how to tune Spark application code. The course format emphasizes instructor-led demonstrations illustrate both performance issues and the techniques that address them, followed by hands-on exercises that give students an opportunity to practice what they've learned through an interactive notebook environment. Download full course description What You'll Learn Students who successfully complete this course will be able to: Understand Apache Spark's architecture, job execution, and how techniques such as lazy execution and pipelining can improve runtime performance Evaluate the performance characteristics of core data structures such as RDD and DataFrames Select the file formats that will provide the best performance for your application Identify and resolve performance problems caused by data skew Use partitioning, bucketing, and join optimizations to improve SparkSQL performance Understand the performance overhead of Python-based RDDs, DataFrames, and user-defined functions Take advantage of caching for better application performance Understand how the Catalyst and Tungsten optimizers work Understand how Observability can help troubleshoot and proactively monitor Spark applications performance Learn how the Adaptive Query Execution engine improves performance What to Expect This course is designed for software developers, engineers, and data scientists who have experience developing Spark applications and want to learn how to improve the performance of their code. This is not an introduction to Spark. Spark examples and hands-on exercises are presented in Python and the ability to program in this language is required. Basic familiarity with the Linux command line is assumed. Basic knowledge of SQL is helpful. DATE: December 8-10, 2025 Virtual Classroom, EMEA 9:00 - 17:00 (GMT+2 TIMEZONE) Read more

Overview This three-day hands-on training course delivers the key concepts and expertise developers need to optimize the performance of their Apache Spark applications. During the course, participants will learn how to identify common sources of poor performance in Spark applications, techniques for avoiding or solving them, and best practices for Spark application monitoring. Optimizing Apache Spark Applications presents the architecture and concepts behind Apache Spark and underlying data platform, then builds on this foundational understanding by teaching students how to tune Spark application code. The course format emphasizes instructor-led demonstrations illustrate both performance issues and the techniques that address them, followed by hands-on exercises that give students an opportunity to practice what they've learned through an interactive notebook environment. Download full course description What You'll Learn Students who successfully complete this course will be able to: Understand Apache Spark's architecture, job execution, and how techniques such as lazy execution and pipelining can improve runtime performance Evaluate the performance characteristics of core data structures such as RDD and DataFrames Select the file formats that will provide the best performance for your application Identify and resolve performance problems caused by data skew Use partitioning, bucketing, and join optimizations to improve SparkSQL performance Understand the performance overhead of Python-based RDDs, DataFrames, and user-defined functions Take advantage of caching for better application performance Understand how the Catalyst and Tungsten optimizers work Understand how Observability can help troubleshoot and proactively monitor Spark applications performance Learn how the Adaptive Query Execution engine improves performance What to Expect This course is designed for software developers, engineers, and data scientists who have experience developing Spark applications and want to learn how to improve the performance of their code. This is not an introduction to Spark. Spark examples and hands-on exercises are presented in Python and the ability to program in this language is required. Basic familiarity with the Linux command line is assumed. Basic knowledge of SQL is helpful. DATE: September 22-24, 2025 Virtual Classroom, EMEA 9:00 - 17:00 (GMT+2 TIMEZONE) Read more
Shopping Cart
Your cart is empty